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Lax Pair Representation for the KPIl Equation

The KPI equation is given by
(g + 6uux + Uy )x = 3uyy (1)

Dryuma (1974) found a Lax pair for (1) in the following form:
iy + hxx +up =0 (2)
x

Pt + 4Pxxx + 6UPy + 39 {ux — i/ uydx/} =0 (3)

(o]

where the KPI equation is the compatibility condition for (2) and (3).

Note: 1 is scaled by phase, i.e., ¢ — et to eliminate the spectral
parameter A in the original Schrodinger equation.
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A Lump Solution

There are two important aspects of the KPI equation compared to the KdV
equation:

@ Soliton solutions of KdV are also solutions of KPI without depending on
y but they are linearly unstable (Kadomtsev and Petviashvili, 1970).

@® The KPI equation also admits lump solutions that decay algebraically
both in x and y (Bordag, Its, Manakov, Matveev and Zakharov, 1977,
Ablowitz and Satsuma, 1978).

One lump solution is given by
u(x,y, t) = 202 In [(X +X)2+ Y2] (4)
where

X(y, t) = ay —3(b* — a°)t + xo,
Y3(y,t) = b*(y +6at+y)> + b2 Y >0
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Solving KPI as an IVP

Zakharov and Manakov (1979) and Manakov (1981) developed an inverse
scattering formalism to solve (1):

® They considered (2) as a scattering problem and obtained a linear integral
equation of Gel'fand-Levitan-Marchenko type.

® However, the class of initial data was not specified, other than saying
u(x,y, t = 0) must vanish rapidly as x? + y2 — .
Manakov, Santini and Takhtajan (1980) showed that lumps solutions do not

evolve from initial data for which these methods are valid.

Question: Were lumps excluded by some limitation of Manakov's method, or
are they unstable in some sense?
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Relation of A Lump Solution to Initial Data

Denote the initial data of (1) by u(x, y). Fourier transform of u(x,y) in x
variable is given by

a(m,y) = /u(x,y)ef"mxdx
so that
1 .
u(x,y) = o / a(m,y)e"™ dm

Assume that

U(e) = 5 [ [1atm,y)ldmdy < oo )
Taking the Fourier transform of a lump solution in (4) at t = 0,
6(m, y) = 47| m|e” MY HmX (6)
so that
U(o) = 4m (7
*Scattering solutions in the direct scattering problem are defined iteratively if
U(eo) < 1 (8)
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Analogy with Modified KdV Equation

The modified KdV equation is given by

Vt +6V2Vx + Vixx =0

/|v\dx: T

The Gel'fand-Levitan equation can be solved iteratively (Ablowitz, Kaup,
Newell and Segur, 1974) if the initial data satisfies

Then every soliton satisfies

/|v\< 0.904

So, the solution evolving from this initial data does not contain solitons.
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More Restrictions on Initial Data

First, assume that for each fixed t, u and its x derivatives vanish as x — —oo.
Then, integrating (1) in x,

X

Us + 6Uly + Usxx ~ 38}2, / udx

—0o0

!

Observe that u; also vanishes as x — —oo. Then, assume that v and its x
derivatives vanish as x — +o0 for each fixed t. So,

ug ~ 38}2,/udx/
as x — +oo. If we require u; to vanish as x — 400, we need
/ u(x, y, t)dx = A(t)y + B(t) 9)
Finally, assume that

U://\u(x,y)|dxdy<oo (10)
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More Restrictions on Initial Data (ct'd)

At t = 0, integrating (9) in y over [—R, R] for some R > 0,

// u(x,y)dxdy = 2B(0)R

Then using (10), we obtain 2|B(0)|R < oo for any R > 0. So, B(0) = 0.
Similarly, at t = 0, integrating (9) in y over [0, R] gives A(0) = 0. Thus,

/ u(x,y)dx =0 (11)

The method discussed requires the restriction (11) on the initial data in
addition to (5).
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Left and Right Scattering Solutions

Since u(x,y) — 0 as y — £00, (2) has an asymptotic solution
P(x,y; k) ~ e —iky o y — too
Let ¥(x,y; k) = e’lkX*"kQYy(x,y; k), so that (2) becomes
idy + pxx + 2ikpx +up =0 (12)

Let i, and g be two solutions of (2) such that ¢, (x,y; k) ~ =ik ag
y — —oo and Pr(x,y; k) ~ el —ik’y a5y s too.

Now, let
pr(x, y k) =1+ 7/ // ur(x',y'; k) dm dx'dy’
Ur(x, y; k) =1—— / // X',y Y (x ",y'i k) dm dx'dy’ (13)
where

¢ = m(x —x") = m(m+2k)(y = y')
sothat y —+1lasy — —oo and yg — 1 as y — +oo.
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Left and Right Scattering Solutions (ct'd)
Write py = 1+ T,(py) where,

Tu(po)(x, yi k / /[m/ u(x’ y)dm}m( "y k)dx'dy!

For u with sufficiently small norm, the resolvent operator [/ — T,] ™! exists and
it has a convergent Neuman series. Thus, y; = (I — T,) 11 =Y, T/1.
Let py,, = T/1, so that

}’IL(X/.y; k) =1+ Z ﬂL,n(X,y; k)

n=1

Substituting this into (13),

Py -
Hii(xyik) = i/ // ePu(x',y’) dm dx’ dy’

and for any n > 1

i [y o
Hinpa(xyik) = o /_oo// eu(x,y Yin(x,y's k) dm dx' dy’
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Left and Right Scattering Solutions (ct'd)

Assuming that y; (X, y; k) has a Fourier transform in x, p; ,(m, y; k),

y . ’
Ara(x yi k) = i/ e mm 20 =Y G(m, y")dy'

and forany n > 1

~ i Y —im(m —y'
ALnsaleyik) = oo [ e MmO sy ) (m, s )y (14)

Let
y 2 u\m,y m ay

Then, by (14),

o [17a(m,y: 0dm < U(y) (15)
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Left and Right Scattering Solutions (ct'd)

Hence, it follows from (14) and (15) that

/\VLn(m yik)[dm < U(y)

1 ~
Note that |p; n(x, y; k)|< > J#ie,n(m, y, k)|dm. Then,

oo U n
Gy k)< 1+ ) (y.) — V) < GU()
n=1 :

Similarly,
lur(x, y: k)|< V)

Thus, if U(c0) < co, then (13) has a unique solution for all x,y, k € R.
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Scattering Kernel S

Define a scattering kernel as
St ket m) = = [ IR o,y (o s k)i ' (16)
We wish to show that
HROX, Y k) = Hi(x,yi k) + / S(k, k+m)pi(x, y: k+ m)e™m(mt2k)Y gm
or
VRO K) = Y0y k) + [ S(k D9,y Dl ()
Rewrite (13) as

prL =14 Gro* (uprL)

where the Green's functions are

GrL(x, yi k) = ;ie(iy)/efmxfim(mﬂk)ydm
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Scattering Kernel S (ct'd)

Note that
(G — Gul(x,yi k) = = [ em=mlm260 gy (18)
Let Ay = pg — py. So, Ay = Gg * (upr) — G * (upy). Then, rewrite Ay as

Ap = (Gr = G1) * (upRr) + GL+ (u(Ap)) (19)
Substituting (18) into (19),

A,y k) = [ Sk, k+m)em™=mm 297 g 1[G, + (uB)](x, i k) (20)

For U(co) < 1, the resolvent operator [I — G, * (u-)]™! exists. So, we can solve
(20) for Ap,

Ap(x,y; k) = / S(k, k+m){[l = G x (u)] " temmim(mt2k ygm  (21)
with

[~ Guw(u)] t = io[GL*‘“')]"
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Scattering Kernel S (ct'd)

Comparing (21) to (17), it suffices to show that for any n € ZT,
[GL* (un)] e im(ma2K)Y — yy (x, y; k4 m)em™—im(mt2k)y (22)
so that
[1 — G, (u)] " Ltelmx—im(m+2KY] — 4y, (x, y: k + m)eimx—im(m+2)y

Note that the zero-th order term in (22) is e/™mx—im(m+2k)y

We calculate the first-order term to be
[GL % <ueim~—im(m+2k)~>] (x,y; k) = eimx—im(m+2k)ny’1(X’y; k + m)

By induction, we obtain (22), so that we prove the jump relation (17).
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Comments on Left and Right Scattering Solutions

To solve the inverse scattering problem, we require that
@ the scattering kernel evolves linearly in time.
@ The scattering solutions involved are analytic in k in appropriate

half-planes.

However, j1; and pig generally are not analytic in k. The integrals in (13) are
defined only for real k if u(x, y) is real because y — y’ is unbounded and m
takes both negative and positive values.

So, y; and ug are not appropriate scattering solutions for the inverse problem
if the initial data is real.
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Alternative Set of Scattering Solutions

Define at t = 0,

T(X yik)=1-— i/ /0 /ei(’)u(x',y')pn(x/,y';k) dx dm dy’
y

i/m/m/ ePulx,y"Yul (X, y'; k) dx' dm dy’
(o]

uH(x, yi k) —1_; / / ePu(x,y (<, y'; K) dx' dm dy’

"<

?/_oo/o / ePu(x,y Yt (x,y's k) dx' dm dy'  (23)

Note that ! can be extended to Im(k) > 0 and pu* to Im(k) < 0.
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Upper and Lower Scattering Solutions

Let us solve (23) iteratively similar to what we did before.

Let yT 1+ 1;4,,
Then by (23),

ul(x ik =5 / / / (', y") dx’ dm dy’

—/ / /ei‘pu(x/,y/) dx' dm dy’
)y Jo

and for any n > 1,

‘un+1 X,y k 27[/ / / ,y/)]ﬁ,(xl,y/; k) dx’ dm dy’

—/ / /e'.‘pu(x/,y/)yj,(xl,y/; k) dx" dm dy’
.ty Jo

Samir Donmazov University of Kentucky



0000000000 e0000000000000

Upper and Lower Scattering Solutions (ct'd)

Taking the Fourier transform of u},(x, y; k) in x,
Alm,yik) =i [e m 200 g(m, ')
~[0(y = y")0(=m) — 6(—(y — y")8(m))] dy’
Fha(myik) = 5 [ 200 (m, Y i) om, o' K)
-[0(y = y"o(=m) = 6(=(y —y"))o(m))] dy'  (24)

Then, by (24),

27T/|y1myk)|dm<—{/ / a(m,y")| dm dy’
7 ety anay| s

Note that since u(x, y) is real, G(—m, y) = u(m, y).
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Upper and Lower Scattering Solutions (ct'd)
Taking m to —m in the first term on the right hand side of (25),
< = -
o [1Akmyildm < o [ [“lagmy)] dm oy = Jue)  (26)
Hence, it follows from (24) and (26) that
17, 1
o [18k(m, y: k)] dm < S U(e0) (27)

Thus, if U(c0) < 1, then (23) has a unique solution for all x,y, k € R, which is
uniformly bounded by

1 2—U
W Goyi k< 142 Y U(eo)” ()
n=1

~ 2(1- U(®))

Differentiating 1T (x, y; k) in (23) with respect to k, we observe that the
nonhomogeneous term is defined for Im(k) > 0 because if m(y —y’) < 0, then

1
: _ e 2km(y—y')| <
|2im(y — y')e 1< ke

So, u'(x,y; k) is analytic in Im(k) > 0.
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Scattering Solutions for One Lump

Consider one lump solution (4) at t = 0 so that U(c0) < 1 does not hold.
Ablowitz and Fokas showed that at t = 0 the scattering solutions are given by

c+ d+
x—I—Z+x+Z*

u(x, y k+) =
which satisfies (13) and vanishes as x? + y2 — oo, where

b2 —i
Pty =iy o ok ——atib

Z=X(y)+i¥(y), cxt=17 by

One can show that pi(x, y; k+) are homogeneous solutions of (23), so (23)
cannot be solved iteratively if the initial data is one lump, i.e., (4) at t = 0.
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Asymptotic Behavior of Upper Scattering Solution

Integrating by parts in ¥/, one can show that as Im(k) — oo,

1

ul(x, y; k) ~ 1+

A g 4 o K1) (28)
m
Note that (28) is valid if 4(0, y) = 0, which is the same as (11).

Also, note that if we can recover ! from the scattering data in the inverse
problem, then u can be obtained from ' using (28).
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Asymptotic Behavior of Upper Scattering Solution (ct'd)

Alternatively, (28) can be obtained by (12).
Let 4 = 14 v, and rewrite (12) as

iVy + Vxx + 2ikvx +uv +u =0

Note that as Im(k) — oo, either v — 0 or v = 0. The second gives trivial
solution u = 0.

If v and its derivatives vanish as Im(k) — 0, then we obtain
2ikvy + u ~ 0 (29)

Taking the Fourier transform of (29), then solving for v gives the leading term
in (28).
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Jump Relation Between Upper and Lower Scattering
Solutions
We wish to show that
WOy k) = 1t yik) = [ F(k D, s DKy
or
9100y k) = 9H 0ok + [ Flk DY Coyi Dl (30)

Assume that F(k,-) € L}(R).
Rewrite (23) as

yT,L —14+G6M« (uyT’L)
where the Green’s functions are

GTli(X,y; k) = i / [0(y)8(Fm) — 6(—y)B(%)] eimx—im(m+2k)y 4.
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

Note that

[GT = GH(x,y; k) = i /sgn(m)eimx—im(m+2k)ydm (31)
Let A= pu' —ut. So, Ap = GT * (upl) — G* * (upt). Then, rewrite Ap as

Ap = (61— G x (upT) + G+ (u(Ap)) (32)

Substituting (31) into (32) and (30) into both sides of (32), we obtain
[ Fll it ey DU

_ / T(k, ,)ei(/—k)x—i(ﬂ—k?)yd/Jr
// Gi(x —xy =y i ku(x,y") / F(k, /)]ﬂ(x/,y'; l)eiU*k)XLi(/zﬁkz)y/d/dx/dy/

(33)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

where

T(k, k+m)= —i sgn(m) // efimX/Hm(erQk)yIu(x/,y/)yT(X/,y/; k)dx'dy’

(34)

Rewriting (23) for p*(x,y; ), multiplying by F(k, /)e"[(’*k)xf(lszz)y] and
itegrating in /,

/F(k, /)yi(xly; /)ei(lik)xii(lszz)ydl

_ /F(k, l)ei(lfk)xfi(l2fk2)ydl
-|—///GT(X—X',y—y’;l)u(x',y')yi(x',y/;I)dx’dy'F(k,/)ei(/_k)x_i(lz_kz)ydl

(35)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

Subtracting (35) from (33) and taking the Fourier transform,
I
F(k, 1) — T(k, 1) +/ Tu(p, I)F(k,p)dp =0, if k> I
—o0
F(k, 1) — T(k,1) 7// Tu(p, I)F(k,p)dp =0, if k<1 (36)

where

Tl(k,k + m) _ i sgn(m) // efimx/+im(m+2k)y/u(X/,y/)y,L(X/,y/; k)dX/dy/
(37)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

Let /| = k+ min (34) and rewrite as

T(k 1) = =5 sgn(/ — k) / / e HI=RX+IP=)Y 40 1Y/ dy!
] )5 0]
ot — ol [ e 50— e NGy
=gl =R [ e 6/ — k,y')dy

// ik G,y 2 At —k— ’,y’)dy’dm’}
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

Now, note that since we assumed U(o0) < 1, then
1 1
1Ty < 5 [[130=ky)ldy'dl
//\ m',y') {Z /|AT(/—/< m')|dl | dm'dy’

< U(o0) {1+ 5 Zl U(oo)”} by (5) and (27)

_ U)(2 - U())

S -y %
Similarly, || T1(k, )|l rry < %
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

However, we show that we need || Tl(k/‘)”Ll(IR) <1, ie, U(o) <2—-+2 to
have F(k,-) € LY(R), so that F(k, /) is defined by (36) for each fixed k.

Assume that || Tl(k/')”Ll(IR) < 1 and we have that T(k,-) € L}(IR). We wish
to show that F(k,-) € L(R).

For k > I, rewrite (36) as
F(k,I)=T(k,)+S(F)(k,1)=0

where

SNk = [ Talp DF(k,p)op
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Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

It suffices to show that

ISCEY(ks 2 (—oo,y < Ik ) 11 (—co, )

Note that
k i
ISEYK iy < [ [ ITlbDIF G, p)] dp al

k k
< [ _IFG o [Tatp, D) o dp
» :

< HTl(p")”Ll(foo,k)HF”Ll(foo,k)
< NF N oo,k

This shows that F(k,-) € L1(—o0, k).
Similarly, for k < I, we obtain F(k,-) € L!(k, o), so that F(k,-) € L}(R).

Samir Donmazov University of Kentucky



0000000000000 0000000000e

Jump Relation Between Upper and Lower Scattering
Solutions (ct'd)

Finally, if (10), u € L*(IR?) with ||u||;1(g2) = U also holds, then

T )< g = G T and [Talk DI 5 (0

Thus, F(k,I) is defined pointwise by (36).
Therefore, given F(k, ), defined by (36), ¢" and ' are related by (30).

Hence, the direct scattering problem at t = 0 is complete.
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Relation between Scattering Kernels S and T

Note that if u(x, y) is real and ¢; and ¢ are any two solutions of (2), then
iy [P1Po] + Ox[($1)x Py — Y1(P2)x] = 0 (38)

Observe that fz/;@zdx is y independent if the boundary terms vanish after
integrating (38) first in y, then in x.

However, the boundary terms do not vanish for any of ¥z, ;. T, .
Note that as y — oo, Pr(x,y;/) ~ e™ =Y and by (23)

ikx— iky? i o o o / /
IIJT(X,)’?k)Ne'X s 1+§// /e"Pu(x,y);tT(X,y;k)dx dm dy
Then, using the Dominated Convergence Theorem, as y — oo,

/ |:1/JT(X,y; k)lPR(X,y; k)_ei(kfl)xfi(k27/2)y:| dx

— 270(k — )T (k, /) (39)
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Relation between Scattering Kernels S and T (ct'd)

Similarly, as y — —oo,

/ {#)T(X,y; K)pr(x, yi k) — e"(k—’)x—"(kz—’z)q dx — 270(1 — k) T(k, 1) (40)

Segur asserts that if we compute [ ¢7(x, y; k) [1/JR(x,y; 1) —¢r(x,y;1)|dx
using (17), we can obtain the desired relation between T and S,

T(k, Iysgn(k — I) = S(1, k) + /:o S k+mT(kk+m)  (41)
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Time Evolution of Scattering Kernel S

The time evolution of (x, y, t; k) is given by
Myp = [0¢ + 493 + 6udx + 3ux — 3i(dx Luy) +a(k)]y =0

Recall that as y — £o00, {(x, y; k) ~ e"kX*"k2y, and u with its derivatives
vanish. So,

My ~ [0; + 493 + a(k)]eikx*ikzy as y — too
gives (k) = 4ik3.
Consider the time-dependent version of (17)

lIJR(Xr.y/ t; k) = IPL(X/yr t; k) + / S(k/ I, t)IPL(X/yl t; l)d/ (42)
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Time Evolution of Scattering Kernel S (ct'd)
Note that Myipr = My, = 0. So, applying My to both sides of (42) and
taking the limit as y — —o0, we obtain

0= / Mi[S(k, 1, )L (x, v, t; )]l
~ / [0 + 493 + a(K)][S(k, I, t)e™Y]dI
- / {[(at-i—vc(k))S(k, 1, )]e™ =Y 1 S(k, 1, £)[(3¢ + 493 )e™ Y] | dI
= / {atS(k,/, t) +4i(k3 — B)S(k, 1, t) | e™ " di (43)

Let g(k, I, t) = [0:S(k, I, 1) + 4i(k3 — 3)S(k, 1, t)]e~""Y . Multiplying both
sides of (43) by a test function ¢ € S(IR) and integrating in x,

0= /g(k, 1, 6)@(dl for any ¢ € S(R)
So, g(k,1,t) =0, i.e., :S(k, I, t) +4i(k3 = 13)S(k,1,t) = 0. Thus,
S(k,1,t) = S(k, l)e4i(/3_k3)t (44)
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Time Evolution of Scattering Kernels T, T; and F (ct'd)

Since S*(k, I, t) evolves in accordance with (44), then

T(k, 1, t) = T(k, )e* ("=t (45)
satisfies the time-dependent version of (41).
Similarly,

Ti(k, 1, t) = Ti(k, 1)eH (P (46)
Then,

F(k,1,t) = F(k, 1)e*(’=K)t (47)

satisfies the time-dependent version of (36).

Thus, all of the scattering kernels S, T, T1, F evolve linearly in time.
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Recovering a Solution of KPI via Inverse Scattering
Comments on Solving for u(x, y, t) via Inverse Scattering:
® F(k,I,t) is given in terms of the initial data u(x, y) via (36) and (47).
® u(x,y,t) can be recovered from u'(x,y, t) via (28) or (12).
® The main problem is to recover u'(x, y, t) in terms of F(k, I, t) via (30).

A formal procedure for solving (30) (Manakov, 1981) assumes triangular
representation given by

. . X . .
PHxyik) = Y [T K(xz, ) dz (48)
If (48) exists, then (30) can be reduced to a linear integral equation of
Gel'fand-Levitan-Marchenko type.
Finally, if such K exists, substituting (48) into (2), we obtain

oK (x,x,y)

M\ )
ox

so that we do not need (28) to recover the solution.

u(x,y) =
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Questions on Justification of Manakov's Procedure

® Does triangular representation in (48) exit?
Gel'fand and Levitan (1951) showed explicitely that their kernel
corresponding to K in (48) exits using the theory of hyperbolic pdes but
no such proof provided by Manakov.

® Are further restrictions on the initial data required to assure a unique
solution of the Gel'fand-Levitan type equation?

Author deferred further analysis of the inverse problem to a later paper, which
presumably was not published, in which there is no need for the initial data to
be small, so that lump solutions are not excluded a priori.

Samir Donmazov University of Kentucky
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